#### St Mary Redcliffe and Temple 6th Form #### Year 11 into 12 transition task Subject: Biology The Biology transition task has a compulsory part and an optional part: - The usual transition task where you research and produce a poster about a protein in humans of your choice, and the gene that controls its production, which will be presented and peer assessed at the start of the Year 12 course (Appendix A – Page 31). - 2. An optional consolidation task where you can review the key Biological knowledge you need for the Year 12 course using summary sheets and worksheets (Appendix B Page 2). For students that have not met the required 65 in Combined Science or 6 in Biology, or a 6 in Maths, there will be a separate "Entry Test" to sit on the 6<sup>th</sup> Form Pre-Enrolment Day. This will comprise questions relating to the content in the consolidation task as well as key maths skills relevant to the Biology course. Completing this test to a satisfactory standard would result in you being accepted on the course (and you would find out this result on the same day). NB: The human proteins task is a substantial piece of work. It would be VERY unwise to leave it until the last minute. It's recommended that you use the time you have in May/June when you would not normally be sitting exams to complete both of these tasks, thoroughly. If you complete all of these tasks and still find yourself hungry for more Biology, please refer to the Redcliffe 6<sup>th</sup> Form Additional Reading and Research list for wider reading that will deepen your understanding further and prepare you well for Year 12. #### <u>Transition task – Human Proteins and their Genes</u> We inherit our genes from our parents which then determine our characteristics. In fact, genes code for proteins, so it must proteins that somehow help develop our characteristics. At A level, we explore in detail how genes on DNA code for proteins. Cells work because of the proteins made in them. These proteins do very many important tasks in the body. It makes sense then that we familiarise ourselves with some of the proteins in our bodies. To start you off watch this short TED-Ed talk on proteins and their importance <a href="https://ed.ted.com/on/6GPobgr2">https://ed.ted.com/on/6GPobgr2</a>. Watch the WHAT ARE PROTEINS video on the following website <a href="http://learn.genetics.utah.edu/content/molecules/">http://learn.genetics.utah.edu/content/molecules/</a> and use the other tabs to explore and learn more about proteins. Your task is to research and produce a poster of a specific protein in humans of your choice and its' gene. (there are hundreds of proteins to choose from e.g. Lysozyme, myoglobin, salivary amylase, lipase, actin, myosin, haemoglobin, myoglobin, insulin, insulin receptor, p53, opsin, collagen, keratin, cytochrome C, channel proteins, active transport proteins, fibrinogen, DNA polymerase, RNA polymerase, LDL receptor, CFTR protein, aquaporin, elastin, sodium pump, potassium voltage dependant channel protein, thromboplastin, prothrombin, histone, plus 1000,s of others as you will see from looking through the resources provided). Your choice. Be adventurous. Your poster needs to be word processed, A4, to include name and a picture of the protein molecule, a <u>simple</u> description of its shape, its location and function and 1-2 interesting details of its gene (eg size, exact location) and a picture of which chromosome it is found on. It is to be handed in to your new teacher on the first week back. You will be expected to be an expert on your chosen protein and its' gene, so expect to talk confidently about it using terms you can explain so avoid strange terminology). Resources downloadable from the SMRT website: Proteins as molecular machines poster. Some info on each chromosome/gene: <a href="https://ghr.nlm.nih.gov/gene">https://ghr.nlm.nih.gov/gene</a> Useful website about proteins and DNA: <a href="http://learn.genetics.utah.edu/content/molecules/">http://learn.genetics.utah.edu/content/molecules/</a> Useful website about proteins: <a href="http://www.rcsb.org/pdb/home/home.do">http://www.rcsb.org/pdb/home/home.do</a> #### To get more into what this subject is about at a higher level: This website has a wide range of relevant and helpful information about Chromosomes, DNA, Inherited Diseases etc. http://www.yourgenome.org/ worth a look and save for future reference. If you fancy listening to a TED talk (<a href="http://www.ted.com/talks">http://www.ted.com/talks</a>) – search for Richard Resnick – "Welcome to the genomic revolution" ## **Section A: Cells** #### Table of resources in this section | Topics covered | Type of resource | Resource name | Brief description and notes for resource | |-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------| | <ul> <li>Cells and microscopy</li> <li>Mitosis</li> <li>Gram staining</li> <li>Osmosis</li> </ul> | Teacher<br>resource | Suggested activities | Specification references and practical information for the lesson ideas. | | <ul> <li>Cell structure</li> <li>Mitosis</li> <li>Microscopy</li> <li>Diffusion, osmosis<br/>and active transport</li> </ul> | Teacher<br>resource | Summary<br>sheets | Information that can used to support practical activities in the lab or completion of the consolidation activities | | Cell structures | Student<br>worksheet | Worksheet 1:<br>Cell structures<br>1 | Extracting information from text to list the features of animal, plant and bacterial cells. | | Cell structures | Student<br>worksheet | Worksheet 2:<br>Cell structures<br>2 | Extracting information from text and using it to draw and label animal, plant and bacterial cells. | | <ul> <li>Bacterial, animal and plant cell features.</li> <li>Mitosis and magnification calculations.</li> <li>Diffusion, osmosis and active transport.</li> </ul> | Student<br>questions | Practice<br>questions | Exam questions on section covering KS4 to KS5 content. Checking how far students have progressed at the end of the section. | #### Lesson ideas - · Microscope work on animal and plant cells. - Identification of cell features from light and electron microscopy images. - Measure cell length and calculate actual cell size. - Root tip squash to show cells undergoing mitosis. - Gram staining of bacteria. - · Investigating osmosis in potato chips. ### Summary sheet 1: Cell structure Prokaryotes are single celled organisms, including bacteria. They are simpler and smaller than Eukaryotic cells. #### Bacterial cells have: - no nucleus with circular DNA free in the cytoplasm - cell wall made from peptidoglycan - no membrane-bound organelles - small ribosomes. Eukaryotic cells include animal and plant cells. They are larger and more complex than prokaryotic cells. #### Animal cells have: - linear DNA contained inside a nucleus - no cell wall - larger ribosomes and many membranebound organelles including mitochondria where aerobic respiration occurs and endoplasmic reticulum and golgi which are involved in the processing of proteins. Plant cells have the same organelles as animal cells but they also have: - a cell wall - a large vacuole containing cell sap - chloroplasts for photosynthesis. ### Summary sheet 2: Mitosis Mitosis results in the production of two genetically identical diploid body cells. It occurs during growth, repair and asexual reproduction. Mitosis occurs during the cell cycle. The cell cycle consists of a period of cell growth and DNA replication known as interphase and then a period of cell division called mitosis followed by cytokinesis where the cytoplasm divides and the cell membrane constricts to form the two daughter cells. Mitosis is broken down into stages – prophase, metaphase, anaphase and telophase, followed by cytokinesis. A Interphase: before mitosis the tangled, uncoiled mass of chromosomes fills the nucleus. DNA is replicated during this stage. B Prophase: the chromosomes coil and condense, each one appearing as two chromatids. The nucleolus breaks down and the centrioles begin to separate and start to form the spindle. C Metaphase: the nuclear membrane breaks down. Spindles made of microtubules have been formed by the centrioles. The chromatids line up on the equator. D Anaphase: the centromeres separate and each chromatid is pulled along a along a spindle tubule towards one of the poles centromere first. - Early telophase: the chromatids reach the poles of the cell where they are now known as chromosomes. The membrane begins to reform and the cytoplasm to divide. - F Late telophase: the chromosomes begin to 'decondense'. The nuclear membranes and nucleoli are fully reformed and centrioles are present again. The division of the cytoplasm continues until two new identical cells are formed which once more enter interphase. ### Summary sheet 3: Microscopy Magnification is how much bigger the image is than the specimen on the microscope slide. The size of the specimen can be calculated using the formula: With a light microscope the magnification is the combination of the magnification of the objective lens and the eye piece lens. For example a $40\times$ objective lens and a $10\times$ eye piece lens produce a total magnification of $400\times$ . When you are doing magnification calculations you must have all the lengths in the same units. | 1 cm | 10 mm | |------|---------| | 1 mm | 1000 μm | | 1 µm | 1000 nm | #### Calculation Calculate the actual size of a cell with a diameter of 8 mm using 100× magnification. Actual size = $$\frac{8}{100}$$ = 0.08 mm = 80 µm Resolution is a measure of how easy it is to distinguish between two points that are close together i.e. how much detail can be distinguished. Electron microscopes have a better resolution than light microscopes so they can see more detail. # Summary sheet 4: Diffusion, osmosis and active transport #### Diffusion Liquid and gas particles are constantly moving which causes particles to move from an area of high concentration to an area of low concentration. Observing the process of diffusion. If the beaker is left to stand the random motion of both the water and the purple manganite(VII) ions will ensure they are eventually evenly mixed. Small particles can diffuse across cell membranes and no energy is required. Some molecules, such as glucose, are too large to diffuse across the cell membrane so they must be helped by carrier proteins. Each molecule has its own carrier protein that allows the molecule through the cell membrane without the need for energy. This is known as facilitated diffusion. Facilitated diffusion acts as a ferry across the lipid membrane sea. But this is a boat with no oars, sails or engine – it can only work when the tide (the concentration gradient) is in the right direction. #### Osmosis Osmosis is the diffusion of water molecules from an area of higher concentration of water molecules to an area of lower concentration of water molecules across a partially permeable membrane. #### Active transport Active transport uses energy to transport substances across membranes from an area of lower concentration to an area of higher concentration ## Extracting key information from text is an important study skill for A-level candidates. Read through the passage below about animal, plant and bacterial cells. Use the information and your own knowledge to complete the table to list some of the structural features of animal, plant and bacterial cells. The plant cell and the animal cell possess a nucleus containing chromosomes and a nucleolus. In a bacterial cell the DNA is located in the cytoplasm. Only the bacterial cell and the plant cell have a cell wall but all three cells have a cell membrane. The plant cell wall is made of cellulose and the bacterial cell wall is made of peptidoglycan. Centrioles are present only in the animal cell and chloroplasts are found only in the plant cell. Mitochondria and rough endoplasmic reticulum are not present in the bacterial cell. All three cells contain structures called ribosomes which are involved in the synthesis of protein. Bacterial cells can have pili or a capsule. | Features present in<br>animal cells | Features present in plant cells | Features present in bacterial cells | |-------------------------------------|---------------------------------|-------------------------------------| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Extracting key information from text is an important study skill for A-level candidates. Read through the passage below about animal, plant and bacterial cells. Use the information and your own knowledge to draw and label an animal, plant and bacterial cell. You should include the features listed if appropriate. The plant cell and the animal cell possess a nucleus containing chromosomes and a nucleolus. In a bacterial cell the DNA is located in the cytoplasm. Only the bacterial cell and the plant cell have a cell wall but all three cells have a cell membrane. The plant cell wall is made of cellulose and the bacterial cell wall is made of peptidoglycan. Centrioles are present only in the animal cell and chloroplasts are found only in the plant cell. Mitochondria and rough endoplasmic reticulum are not present in the bacterial cell. All three cells contain structures called ribosomes which are involved in the synthesis of protein. Bacterial cells can have pili or a capsule. cell wall nucleus cell membrane ribosome capsule mitochondria cytoplasm chloroplast plasmid chromosome | Animal cell | Plant cell | |----------------|------------| | | | | | | | | | | | | | | | | Bacterial cell | | | | | | | | | | | | | | | | | Extension activity – research any unfamiliar features and add them to your cell diagrams. ### **Practice questions** 1 The diagram shows a bacterial cell with some of the key features labelled. - a Label cell features A, B, C and D. - b Complete the table to identify three features present in animal cells and describe their function. | Animal cell feature | Function | |---------------------|----------| | | | | | | | | | c Some antibiotics prevent protein synthesis by targeting the ribosome. Ribosomes in eukaryotes have a different structure to prokaryotes. In no more than 50 words, explain why these types of antibiotics can be used to treat bacterial infections without effecting human cells. Concise writing which refers to key scientific ideas is effective. 2 The image shows root tip cells at different stages of the cell cycle. - a Identify the stages of mitosis for cells A, B, C and D. - b The microscope used to view the cells had a 10× eye piece lens. Which objective lens was needed to view the cells at this magnification level? - c Calculate the length of cell A. - 3 The diagram shows an animal cell with three key features labelled. | а | Identify three additional features which are found in animal cells and describe their functions. | |----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | 1 | | | 2 | | | 3 | | b | An image of an animal cell nucleus with a diameter of 6 $\mu m$ was obtained using a 10× eye piece lens and 20× objective lens. Calculate the diameter of the nucleus on the image. | | | Substances can be transported into cells through diffusion, osmosis and active ransport. | | Wr | ite a definition for diffusion, osmosis and active transport. | | Di | ffusion: | | | | | Os | smosis: | | Ac | tive transport: | | | | | | | 5 Cells were placed in a solution containing solute X and solute Y. The diagram below represents the concentration of the two solutes inside and outside one of the cells, when this cell was placed in the solution and then after 30 minutes. Explain the movement of solute X and solute Y into the cell. 6 A red blood cell was placed in a solution of distilled water. Explain the effect on the red blood cell of being placed in a solution of distilled water. 7 Explain the key word 'isotonic'. ## **Section B: Molecules** #### Table of resources in this section | Topics covered | Type of resource | Resource<br>name | Brief description and notes for resource | |-----------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------| | <ul><li>Enzyme activity and action</li><li>Translation</li></ul> | Teacher<br>resource | Suggested activities | Specification references and practical information for the lesson ideas. | | <ul><li>Protein synthesis</li><li>Enzyme activity</li></ul> | Teacher<br>resource | Summary<br>sheets | Information that can used to support practical activities in the lab or completion of the consolidation activities | | Carbohydrates | Student<br>worksheet | Worksheet 1:<br>Carbohydrates | Distinguishing between monosaccharides, disaccharides and polysaccharides. | | Data analysis | Student<br>worksheet | Worksheet 2:<br>Data analysis | Task to show the effect of recording and processing data to the correct number of decimal places. | | <ul> <li>Rates of reaction for<br/>enzymes.</li> <li>Effect of<br/>temperature on the<br/>rate of enzyme<br/>activity.</li> </ul> | Student<br>questions | Practice<br>questions | Exam questions on section covering KS4 to KS5 content. Checking how far students have progressed at the end of the section. | | <ul> <li>Transcription and<br/>translation and the<br/>effect of mutations<br/>on DNA sequences.</li> </ul> | | | | #### Lesson ideas - Practical on the action of amylase on starch. - · Practical on factors effecting enzyme action. - Modelling of lock and key hypothesis of enzyme action. ### Summary sheet 1: Protein synthesis A gene is a sequence of DNA which codes for a protein. Proteins are synthesised in a two-step process – transcription and translation. Transcription takes place in the nucleus and translation takes place at the ribosome. A complementary mRNA strand is made using the DNA as a template. The mRNA leaves the nucleus and attaches to the ribosome in the cytoplasm. A triplet of bases on the mRNA (a codon) code for specific amino acids. The amino acids are delivered to the ribosome by tRNA. Peptide bonds are formed between the amino acids to make the polypeptide. The DNA gene sequence is ACA CGG AAA CCT GAC. The mRNA sequence is UGU GCC UUU GGA CUG. This codes for the amino acid sequence is: Cys-Ala-Lys-Gly-Leu The protein folds into a specific structure. For enzymes this means that the active site forms a specific shape that binds specific substrates. Primary structure – the linear sequence of amino acids in a peptide. Secondary structure – the repeating pattern in the structure of the peptide chains, such as an $\alpha$ -helix or pleated sheets. Tertiary structure – the three-dimensional folding of the secondary structure. Quaternary structure – the three-dimensional arrangement of more than one tertiary polypeptide. ## Summary sheet 2: Enzymes activity Enzymes are biological catalysts that speed up chemical reactions. Enzymes work by reducing the amount of activation energy needed for the reaction to occur. The active site of the enzyme is where the substrate binds. It has a specific shape which means enzymes can only bind to a specific substrate. The substrate binds to the active site forming an enzyme-substrate complex. The reaction is catalysed and the products released. Different factors can affect how quickly the enzymes work. These include temperature, pH, enzyme concentration and substrate concentration. As temperature increases there is more chance of a collision between the enzyme and substrates, as they have more kinetic energy. This continues until the optimum temperature where the rate of reaction is highest. As the temperature continues to rise the enzyme denatures, as the active site changes shape, when bonds holding the protein together break. Enzymes also have an optimum pH, above and below the optimum pH the enzyme denatures. As the substrate concentration increases there is more chance of a collision between the substrate and the enzyme. The rate of reaction increases until all the actives sites are occupied. The rate of reaction increases as enzyme concentration increases until all the substrate is bound to an enzyme. In practical situations you can sometimes measure the amount of product formed over time. The initial rate of the reaction for an enzyme can be calculated by measuring the gradient of the graph. If the line is curved a tangent to the curve can be used: gradient = y + x. ## **Worksheet 1: Carbohydrates** The diagram shows the chemical structures of some monosaccharides, disaccharides and polysaccharides. Giving a reason, separate the molecules into these three groups. | Monosaccharides | Disaccharides | Polysaccharides | |-----------------|---------------|-----------------| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ## **Worksheet 2: Data analysis** ## Processed data should be recorded to the same number of decimal places as the primary data This table shows the same data recorded to different numbers of decimal places. | Data set 1 | Data set 2 | |------------|------------| | 2.4 | 2.37 | | 3.6 | 3.55 | | 4.1 | 4.05 | | 2.8 | 2.76 | | 3.5 | 3.51 | - 1 Compare the mean values for data set 1 and data set 2. - 2 Express data set 2 to 1 decimal place. What do you notice? - 3 Explain why it is incorrect to record 3.28 as the mean for data set 1. ## Being able to convert data, using standard form and different units, is an important skill 4 Convert the data in the table below. | Data | | Value | |---------------------------------|--------------------|-------| | 45 100 g | into standard form | | | 45 100 g | into kilograms | | | 34 ms | into seconds | | | 780 µm | into millimetres | | | $0.25 \times 10^{-9} \text{s}$ | into nanoseconds | | ## **Practice questions** 1 Enzyme A catalyses the breakdown of molecule X into Y and Z. $$X \xrightarrow{Enzyme A} Y + Z$$ Molecule X and enzyme A were mixed together at 30°C at pH 6.8. This graph shows the mass of molecule Z formed over a 10 minute time period. a Calculate the initial rate of reaction of enzyme A. **b** What is the rate of reaction of enzyme A after 8 minutes? c Suggest a reason for the rate of reaction calculated in b. 2 Enzyme B catalyses the breakdown of molecule X into Y and Z. $$X \xrightarrow{Enzyme B} Y + Z$$ Molecule X and enzyme B were mixed together at different temperatures. This table shows the initial rate of reaction of enzyme B at 15°C, 25°C, 30°C, 35°C, 40°C and 50°C. | Temperature | Initial rate of reaction of<br>enzyme B (mmol.min <sup>-1</sup> ) | |-------------|-------------------------------------------------------------------| | 15 | 8 | | 25 | 14 | | 30 | 18 | | 35 | 20 | | 40 | 18 | | 50 | 12 | - a The table has some missing information. Add the missing information to the table. - b Plot the data from the table on graph to show the initial rate of reaction of enzyme B at different temperatures. You should consider: - the variable which should be on the x-axis - · the labels for the axis - · the title of the graph. c Compare different rates of reaction of enzyme B at 20°C, 37°C and 45°C. For questions which involve the use of data from a graph you must use scientific knowledge to explain the data you have extract from the graph. 3 Mutations in DNA can impact on the activity of enzymes. This DNA sequence is from the region of the gene which codes for the active site of an enzyme. #### GAA GAG AGT GGA CTC ACA GCT CGG The table shows the amino acid coded for by some codons. | Amino acid/stop signal | DNA triplet codons | |------------------------|--------------------| | Proline | GGT GGG GGA | | Alanine | CGG CGA CGT CGC | | Cysteine | ACA ACG | | Serine | AGG AGA AGT AGC | | Leucine | GAA GAG GAT GAC | | Arginine | GCA GCG GCT GCC | | Glutamine | стт стс | | Gkycine | CCT CCG CCA CCC | | Threonine | TGC TGA TGT TGG | | Stop signal | ATT ATC ACT | - a State the amino acid sequence coded for by the sequence above. - **b** Using the information above explain the effect on the protein produced for the following mutations. GAA GAT AGT GGA CTC ACA GCT CGG GAA GAG AGT GGA CTC **C**CA GCT CGG GAA GAG AGT GGA CTC ACA ACT CGG ## **Section C: Human biology** ### Table of resources in this section | Topics covered | Type of resource | Resource name | Brief description and notes for resource | |---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------| | <ul> <li>Practical activities<br/>on the heart, lungs,<br/>blood vessels and<br/>diffusion</li> </ul> | Teacher<br>resource | Suggested activities | Specification references and practical information for the lesson ideas. | | <ul><li>Heart and lungs</li><li>Circulatory system</li></ul> | Teacher<br>resource | Summary<br>sheets | Information that can used to support practical activities in the lab or completion of the consolidation activities | | Prefixes to scientific terms | Student<br>worksheet | Worksheet 1:<br>Prefixes | Defining the meaning of common prefixes used in scientific terms. | | Use of keywords | Student<br>worksheet | Worksheet 2:<br>Keywords | Increasing the level of detail in exam question answers. | | <ul> <li>Heart structure and the use of keywords in answers.</li> <li>The circulatory system.</li> <li>Diffusion and active transport.</li> </ul> | Student<br>questions | Practice<br>questions | Exam questions on section covering KS4 to KS5 content. Checking how far students have progressed at the end of the section. | #### Lesson ideas - Heart dissection - Lung dissection - · Comparing the elasticity of arteries and veins. - Diffusion in agar cubes. - · Calculation of surface area: volume ratios. ### Summary sheet 1: Heart and lungs The left side of the heart pumps oxygenated blood from the lungs around the body. The blood enters the left atrium from the pulmonary vein. It flows through the atrioventicular or bicuspid valve to the left ventricle. The blood is then pumped into the aorta, through a semi-lunar valve, and around the body. The right side of the heart pumps deoxygenated blood from the body back to the lungs. The blood returns from the body to the right atrium via the vena cava. It flows through the atrioventicular or tricuspid valve to the right ventricle. The blood is then pumped into the pulmonary artery, through a semi-lunar valve, and to the lungs. The atrioventricular valves between the atrium and ventricles open to allow blood to flow from the atrium into the ventricles and close when the pressure in the ventricles rises to prevent back flow. The semi-lunar valves in the aorta and pulmonary artery open to allow blood from the ventricles to flow into the arteries. They close to prevent backflow into the ventricles as the heart relaxes. Oxygen enters the blood in the alveoli of the lungs. Oxygen in the alveolus is at a high concentration and it diffuses down the concentration gradient into the blood which has a low concentration of oxygen. This low concentration is maintained because the blood is moving and carries the oxygen away. The walls of the alveolus and capillaries are only one cell thick. This creates a short diffusion distance between the alveolus and the blood allowing a high rate of diffusion. #### **Diagrams** ## **Summary sheet 2: Circulatory system** Blood flows around the body via a network of arteries, veins and capillaries. The double circulation system of mammals means that blood flows through the heart twice in one complete cycle of the body. The pulmonary system pumps blood around the lungs and the systemic system pumps blood around the rest of the body. Arteries carry blood away from the heart. The vessel walls are thick and muscular with elastic fibres to withstand the high pressure generated by the heart. Veins carry blood from capillary beds back to the heart. The blood is at low pressure and the walls of the vessels are relatively thin with less elastic fibre. The contraction of muscles help push the blood though veins and the vessels have valves to prevent backflow. Capillaries are thin vessels that form capillary networks around tissues. They allow the exchange of substances such as oxygen, glucose and waste materials between cells and the blood. ## **Worksheet 1: Prefixes** Scientific terms use common prefixes. Find out the definition/meaning of the prefixes shown in the table. | Definition/meaning | |--------------------| | | | | | | | | | | | | | | | | | | | | | | | | ## Worksheet 2: Keywords ## Candidates frequently lose marks in examinations because they do not use sufficient key words in detailed responses. Read the responses to the questions below. Using the keywords from the box write improved answers to the questions. | concentration | | capillaries | | vein | | |---------------|-----------|-------------|------------------|--------|------------| | | diffusion | | thin | | semi-lunar | | right | | pulmonary | | valve | | | | gradient | | atrioventricular | | left | | aorta | | vena cava | | artery | | | | thick | | osmosis | | | Explain how oxygen enters the blood at the alveoli. In the alveolus oxygen from the air moves into the blood vessels through the walls of the alveolus. The blood is moving so there is always a low concentration in the blood. 2 Describe the route blood takes from the lungs to the body. Blood from the lungs blood travels through a vein to the atrium. The blood is pumped from the atrium into the ventricle and then into the aorta. ## **Practice questions** systole: | а | Write a definition for each key word in the box. If possible give a structural feature for each key word. | | | | | | | |-----|-----------------------------------------------------------------------------------------------------------|----------------|----------|-----------------|---------------|-----|--| | | atria | | aorta | vena cava | pulmonary art | ery | | | | | pulmonary vein | | ventricular val | | | | | | | semi-luna | r valves | diastolye | systole | | | | atı | ria: | | | | | | | | ve | ntricles: | | | | | | | | ao | rta: | | | | | | | | ve | na cava: | | | | | | | | pu | lmonary a | artery: | | | | | | | pu | lmonary v | vein: | | | | | | | atı | rioventric | ular valves: | | | | | | | se | ptum: | | | | | | | | sei | mi-lunar v | alves: | | | | | | | Ч | liastole: | | | | | | | b Label this diagram of the heart using as many of the key words from 1 a as possible. - c Use the keywords from 1 a in your answers to the following questions. - i Explain why the left ventricles has thicker chamber walls than the right ventricle and the atriums. ii Describe the role of the atrioventricular valves. 2 This flow diagram shows the part of the circulation system in a mammal. a Complete a table to show conditions of blood vessel A, B and C. | Blood<br>vessel | Type of vessel | Level of oxygen saturation | Relative<br>pressure<br>of the<br>blood | Valves<br>present in<br>the vessel | Thickness<br>of blood<br>vessel<br>walls | |-----------------|----------------|----------------------------|-----------------------------------------|------------------------------------|------------------------------------------| | Α | | | | | | | В | | | | | | | С | | | | | | **b** Draw a line on the axis to show the blood pressure changes in the blood as it flows from the heart to the lungs before returning to the heart. 3 Amoeba is a single-celled aquatic organism. Substances in the water can enter the cell by a variety of mechanisms. An experiment was carried out to compare the uptake into **Amoeba** of substance A and substance B. Some of these organisms were placed in a solution containing equal concentrations of both substances and kept at 25°C. The concentration of substances A and B, in the cytoplasm of these organisms, was measured every 30 minutes over a period of 5 hours. The results of this experiment are shown in the graph below. a Using the information in the graph, compare the uptake of substance A with the uptake of substance B during this period of 5 hours. b Substance B enters the cells by diffusion. Describe and explain how the results of this experiment support this statement. c Substance A enters the cells by active transport. Give two differences between active transport and diffusion. 1